Tuyển chọn những bài tập hình học hay và khó luyện thi vào lớp 10
Bài 1 Cho điểm A ở ngoài đường tròn tâm O. Kẻ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). M là điểm bất kì trên cung nhỏ BC (MB, MC). Gọi D, E, F tương ứng là hình chiếu vuông góc của M trên các đường thẳng AB, AC, BC; H là giao điểm của MB và DF; K là giao điểm của MC và EF.
1) Chứng minh: a) MECF là tứ giác nội tiếp. b) MF vuông góc với HK.
2) Tìm vị trí của điểm M trên cung nhỏ BC để tích MD.ME lớn nhất.
Bài 2 Cho hình vuông ABCD có độ dài cạnh bằng a, M là điểm thay đổi trên cạnh BC( M khắc B ) và N là điểm trên CD ( N khác C ) sao cho góc MAN bằng 45 độ.Đường chéo BD cắt AM và AN lần lượt tại P và Q.
a) Chứng minh rằng ABMQ là tứ giác nội tiếp.
b) Gọi H là giao điểm của MQ và NP. Chứng minh rằng AH vuông góc với MN.
c) Xác định vị trí điểm M và điểm N để tam giác AMN có diện tích lớn nhất.
Bài 3 Cho đường tròn (O ; R) và dây AC cố định không đi qua tâm. B là một điểm bất kì trên đường tròn (O ; R) (B không trùng với A và C). Kẻ đường kính BB’. Gọi H là trực tâm của tam giác ABC.
1) Chứng minh AH // B’C.
2) Chứng minh rằng HB’ đi qua trung điểm của AC.
3) Khi điểm B chạy trên đường tròn (O ; R) (B không trùng với A và C). Chứng minh rằng điểm H luôn nằm trên một cung tròn cố định.
Bài 4 Cho đường tròn (O), dây AB không đi qua tâm. Trên cung nhỏ Ab lấy điểm M (M không trùng với A, B). Kẻ dây MN vuông góc với AB tại H. Kẻ MK vuông góc với AN (KÎAN).
- Chứng minh: Bốn điểm A, M, H, K thuộc một đường tròn.
- Chứng minh: MN là tia phân giác của góc BMK.
- Khi M di chuyển trên cung nhỏ AB. Gọi E là giao điểm của HK và BN. Xác định vị trí của điểm M để (MK.AN + ME.NB) có giá trị lớn nhất.
Và còn nhiều bài toán hay nữa: